Se Universityorldaho

Dose - Response Relationships

Food Toxicology Instructor: Gregory Möller, Ph.D. University of Idaho

Learning Objectives

- Understand the quantitative relationship between toxicant exposure and induced effects.
- Describe frequently encountered toxic effects.
- Interpret frequency (normal distribution) and dose response curves.
- Understand threshold effects with dosage increase.

Learning Objectives, 2

- Understand effective dose, margin-of-safety and the relationship of effective vs. toxic dose.
- Examine the use of actual data for no observed effect and lowest observed effect in risk assessments.
- Summarize effective, lethal and toxic doses.
- Understand a linearized multi-stage model for non-threshold responses.

What is a Dose?

- The amount of a substance administered at one time.
- <u>Dosage</u> is the amount per unit weight of the exposed individual.
- Exposure is characterized
 - by
 - Number of doses
 - Frequency of dosingThe total period of time
 - for the exposure.

Quantifying the Dose

- Gram (g) is the standard unit but mg is typical of most exposures in toxicology.
- Dosage: mg (dose) / kg (bw) / day (duration)
 mg/kg/d
- Exposures are quantified in relation to the media.
 - mg/L in water.
 - mg/kg in food.
 - mg/m³ in air.
- Variation in units common (ppm, ppb).

Key Concepts

- Dosage response mathematical relationship (positive slope).
- Causal relationship.
- Observable responses.
- Statistical management of variability of individual responses.
 - Species, genetics, age, sex.

Responses (Toxic Effects)

- Inflammation.
 - Local or systemic response.
- Necrosis.
 - Cell or tissue death.
- Enzyme inhibition.
 - Biochemical pathway interruption.
 - Competitive; non-competitive.
- Biochemical uncoupling.
 Interference with
 - phosphate molecule synthesis (ATP)

Responses (Toxic Effects), 2

· Lethal synthesis.

- Toxicant incorporation into a biochemical pathway.
- Lipid peroxidation.
- Free radical oxidation of fatty acids leading to cell death.

Covalent binding.

 Of electrophilic reactive metabolites to nucleophillic macromolecules.

Responses (Toxic Effects), 3

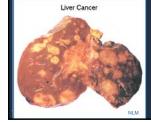
• Receptor interaction.

 Modification of normal biological effects mediated by the receptor.

• Immune-mediated hypersensitivity reactions.

 Antigenic chemicals resulting in allergic reaction.

• Immuno-suppression.


 Increased susceptibility to infectious agents and tumorigenesis.

Responses (Toxic Effects), 4

• Neoplasia.

g Ballantyne

- Aberrant cell division and tissue growth.
- Neoplasms: tumorigenesis, oncogenesis.
- Malignant neoplasms: carcinogenesis.

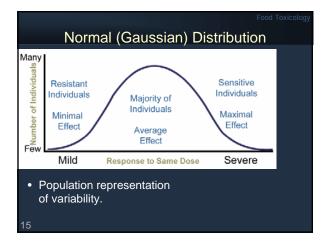
Responses (Toxic Effects), 5

• Genotoxic interaction.

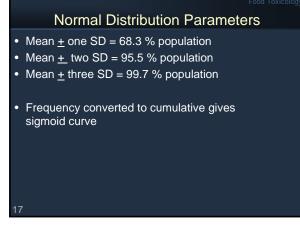
- Chemical interaction with DNA possibly leading to heritable change.
- Clastogenic (chromosomal) effects.
- Mutagenic (base pair) effects.
- Developmental and reproductive toxicity.
 - Adverse effects on conception, and
 - structure and function of the conceptus.

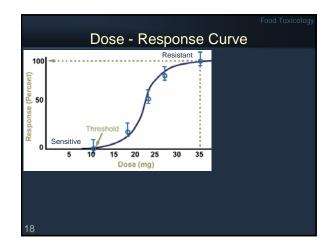
1

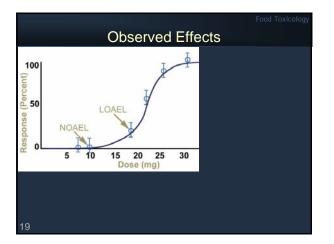
Types of Toxic Responses: Idiosyncratic

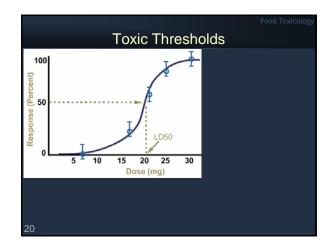

- Genetically determined sensitivity or resistance to toxicity
 - Usually lack of enzymes / factor involved in metabolism
- Primaquine (oxidative anti-malarial drug) 10% black males / erythrocyte G-6-P dehydrogenase / hemolytic anemia
 - Glucose-6-phosphate dehydrogenase deficiency, the most common enzyme deficiency worldwide
- Nitrites lack
- NADH-methemoglobin reductase /
- , methemoglobinemia

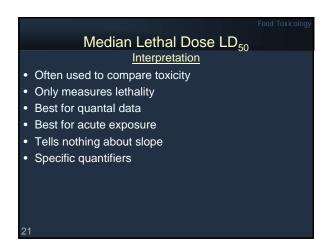

Types of Toxic Responses: Allergic

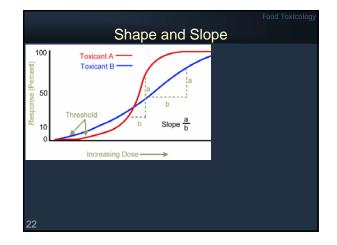

- Immunological mediated response (memory)
- Requires sensitizing exposure
- May involve chemical/protein complex (hapten)
- Atypical dose response
 - Small doses most effectiveLarge dose tolerance
 - Ts cells (suppressor T lymphocytes)
- Contact dermatitis; anaphylaxis
- Pollens, pesticides,
- sulfur, penicillin

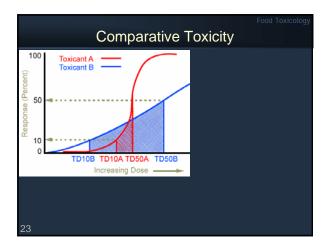

Dose-Response

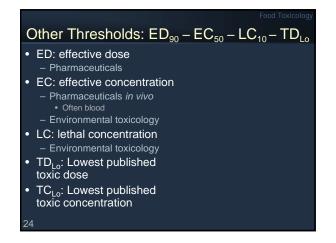

- Quantitative analysis of incremental dose increase and occurrence of toxic end effect
- Responses follow normal frequency distribution (gaussian)

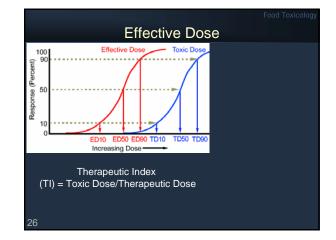






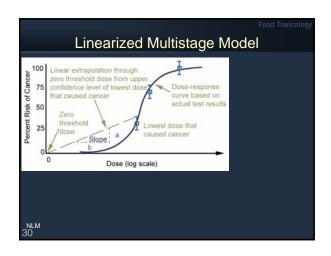






Therapeutic Index - TI

- Ratio of dose to produce toxic effect to dose to produce desired effect
- $TI = LD_{50}/ED_{50}$
- The larger the ratio, the greater the safety (e.g. 10)
- Slope of dose response important



Carcinogen Risk Assessment Linearized Multistage Model Assumes non-threshold effect. Linear extrapolation through zero threshold dose from upper confidence level of lowest dose that caused cancer in animal study. Analysis results in a cancer

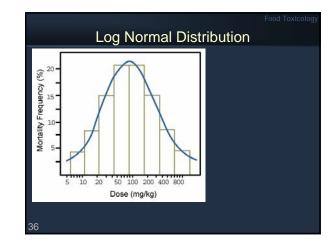
 Analysis results in a cancer slope factor that can be used to predict cancer risk at a specific dose.

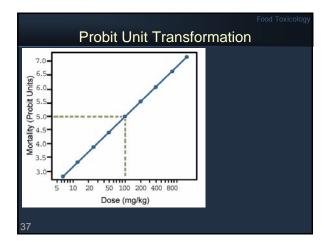
Other Models for Risk Assessment

- One hit model (cancer) - Assumes a molecular event with cellular response.
- Multi hit model (cancer)
 - Assumes multiple events prior to cellular activation.
- Probit model
 - assumes log normal distribution.
- PB PK Physiologically based pharmacokinetic model
 - Uses intensive pharmacokinetic and mechanistic data.

Transformation of Variables

- Allows better (simpler) analysis of data at points of interest such as LD₅₀.
- Transformation into an approximate normally distributed variable.
- **Examples** (r_j = dead animals; n_j = total animals)
- Probit transformation.
- Based on Gaussian (Bell) curve.
- Useful in acute lethality tests.
- Logit transformation.
- Log odds of a quantal response.
- Logit $(r_i/n_i) = \ln [(r_i/n_i)/1 (r_i/n_i)]$
- Weibull transformation.
- Exponential model used in modeling multistage processes.


Probit Transformation


- Probability units → "probits"
- Convert % response to units of deviation from the mean or "normal equivalent deviations" (NEDs).
- Hence the NED for a 50% response is 0.
- "Probit" approach adds 5 to avoid negatives.

						Food Toxicology
Probit Transformation, 2						
% Response	SD	NED	Probit			
0.1	-3	-3	2			
2.3	-2	-2	3			
15.9	-1	-1	4			
50.0	mean	0	5			
84.1	+1	+1	6			
97.7	+2	+2	7			
99.9	+3	+3	8			
				-		
24						
34						

Probit Transformation, 3

- Perform log₁₀ transformation of the dose. - Assumes log normal distribution.
- · Produces an approximately linear relationship. - Allows linear regression analysis.

Summary: Transformations of D-R Curve • Normal frequency distribution • Arithmetic dose to log dose • Frequency data to cumulative • Probability of response to NED - Standard deviations of mean • NED to probit – NED + 5 38

Dose-Response Curve Summary Major Parameters

- Median Lethal Dose LD₅₀ - Other LDs, TDs or EDs
- Slope
- Thresholds
- System saturations
- Comparative toxicity
- Risk assessment

39